-
1 development coal
уголь из подготовительных выработокБольшой англо-русский и русско-английский словарь > development coal
-
2 development coal
Англо-русский словарь технических терминов > development coal
-
3 development coal
Техника: уголь из подготовительных выработок -
4 development coal
MINING TERMS ТНТ №119 -
5 development coal
-
6 development coal
-
7 coal
уголь; каменный уголь-
accessible coal
-
air-dried coal
-
allochthonous coal
-
anthracitic coal
-
ash coal
-
as-received coal
-
baking coal
-
barley coal
-
bedded coal
-
bituminous coal
-
black coal
-
blended coal
-
blind coal
-
boghead coal
-
bottom coal
-
bright coal
-
briquette coal
-
brown coal
-
burnt coal
-
caking coal
-
cannel coal
-
carbonaceous coal
-
cat coal
-
charge coal
-
clean coal
-
clinkering coal
-
close-burning coal
-
coarse coal
-
coking coal
-
decker coal
-
deep-mined coal
-
development coal
-
dirty coal
-
domestic coal
-
dull coal
-
fiery coal
-
fine coal
-
finely pulverized coal
-
flame coal
-
fouling coal
-
friable coal
-
hard coal
-
hard-cleaning coal
-
heavy-coking coal
-
high coal
-
high-ash coal
-
high-grade coal
-
high-moisture coal
-
high-quality coal
-
high-rank coal
-
high-sulfur coal
-
high-swelling coal
-
high-volatile coal
-
immature coal
-
in-situ coal
-
jet coal
-
lean coal
-
low coal
-
low-ash coal
-
low-caking coal
-
low-coking coal
-
low-grade coal
-
low-rank coal
-
low-sulfur coal
-
low-swelling coal
-
low-volatile coal
-
lump coal
-
mature coal
-
medium volatile coal
-
metal coal
-
metallurgical coal
-
metamorphized coal
-
micronized coal
-
mid-rank coal
-
mineable coal
-
noncaking coal
-
nonclinkering coal
-
noncoking coal
-
nonfouling coal
-
outcropped coal
-
powdered coal
- power station coal -
pulverized coal
-
raw coal
-
recoverable coal
-
run-of-mine coal
-
saleable coal
-
sandwiched coal
-
screened coal
-
semianthracite coal
-
short-name coal
-
simulated coal
-
sintering coal
-
slack coal
-
slate coal
-
slurry coal
-
smokeless coal
-
soft coal
-
solvent-swollen coal
-
specular coal
-
standard coal
-
steam coal
-
stone coal
-
subbituminous coal
-
sulfonated coal
-
sulfur coal
-
thermal coal
-
top coal
-
underground coal
-
undersize coal
-
unscreened coal
-
virgin coal
-
volatile coal
-
washed coal
-
waste coal
-
weak coal
-
wood coal -
8 coal mining R & D
MINING TERMS ТНТ №119сокр. от coal mining research and developmentнаучно-исследовательские и проектно-конструкторские работы в области добычи угля -
9 coal mining research and development
MINING TERMS ТНТ №119сокр. coal mining R & Dнаучно-исследовательские и проектно-конструкторские работы в области добычи угля -
10 development
-
11 development and accelerated growth of coal and oil and gas industries
Универсальный англо-русский словарь > development and accelerated growth of coal and oil and gas industries
-
12 development and accelerated growth of coal and oil and gas industries
наращивание и ускорение ввода мощностей угольной и нефтегазовой промышленностиАнгло-русский словарь нефтегазовой промышленности > development and accelerated growth of coal and oil and gas industries
-
13 coal mining R & D (research and development)
English-Russian mining dictionary > coal mining R & D (research and development)
-
14 coal/stone development drivage
English-Russian mining dictionary > coal/stone development drivage
-
15 plant
1) завод; фабрика; предприятие2) установка; агрегат3) электрическая станция, электростанция, ЭС (см. тж
station)4) энергоблок5) цех; отделение; мастерская6) установка сейсмоприёмника в грунте || устанавливать сейсмоприёмник в грунт•-
absorption plant
-
absorption refrigerating plant
-
accumulator plant
-
acetylene compressing plant
-
acid recovery acid restoring plant
-
acid recovery plant
-
adsorption plant
-
aerodrome accumulator plant
-
agglomeration plant
-
air separation plant
-
air-cooled refrigerating plant
-
aircraft development plant
-
aircraft manufacturing plant
-
aircraft overhaul plant
-
aircraft plant
-
aircraft washing plant
-
air-storage gas turbine plant
-
air-storage power plant
-
alkylation plant
-
A-plant
-
arc-furnace plant
-
arc-welding plant
-
asphalt plant
-
assembly plant
-
atomic marine plant
-
atomic power plant
-
automatic flour handling plant
-
auto-shredding plant
-
auxiliary gas turbine power plant
-
back-pressure heat generation plant
-
bakery plant
-
baling plant
-
basic arc-furnace plant
-
basic slag-grinding plant
-
batching plant
-
batch-weighing plant
-
Bessemer plant
-
biogas producing plant
-
blackout plant
-
blast-furnace plant
-
blending plant
-
bob-tail plant
-
boiler plant
-
bow-type plant
-
box plant
-
bread-making plant
-
breaking plant
-
brick-making plant
-
brine refrigerating plant
-
bulk plant
-
butter-making plant
-
by-product coke plant
-
by-product recovery plant
-
by-products plant
-
can-making plant
-
canning plant
-
captive plant
-
car assembly plant
-
carbon dioxide refrigerating plant
-
carbon plant
-
car-repair plant
-
casinghead gasoline plant
-
casting plant
-
CDQ plant
-
cell plant
-
centralized photovoltaic power plant
-
central-mixing plant
-
centrifugal refrigerating plant
-
centrifuge isotope separation plant
-
charge preparation plant
-
cheese-making plant
-
chemical desalting plant
-
chemical separation plant
-
circulation degassing plant
-
clarification plant
-
clay-drying plant
-
closed-cycle cryogenic plant
-
coal gasification-gas cleaning plant
-
coal-cleaning plant
-
coal-conveying plant
-
coal-fired plant
-
coal-injection plant
-
coal-liquefaction plant
-
coal-preparation plant
-
coal-pulverizing plant
-
coal-reduction plant
-
coal-to-methanol plant
-
coal-washing plant
-
cogeneration plant
-
coke dry-quenching plant
-
coke-handling plant
-
coke-pitch plant
-
coke-quenching plant
-
coking plant
-
combination topping and cracking plant
-
combined heat power plant
-
combined photovoltaic-deolian electric plant
-
combined-cycle plant
-
combined-cycle steam plant
-
combiner plant
-
compressor plant
-
concentration plant
-
concrete product plant
-
concrete-mixing plant
-
concreting plant
-
condensate liquid recovery plant
-
condensate purification plant
-
condensing plant
-
confectionary producing plant
-
confectionary plant
-
constant-head plant
-
contactor centrifuge acid treating plant
-
continuous-casting plant
-
conventional power plant
-
converter plant
-
cooling plant
-
copper-smelting plant
-
countercurrent ion exchange plant
-
CR plant
-
crushing plant
-
cryogenic freezing plant
-
cryogenic power generation plant
-
crystal drawing plant
-
cutting and shearing plant
-
cycle-degassing plant
-
cycling plant
-
deaerating plant
-
degreasing plant
-
dendro-thermal power plant
-
desalting plant
-
desinfection plant
-
detinning plant
-
dewatering plant
-
diesel engine power plant
-
direct-expansion refrigerating plant
-
disposal plant
-
distilling plant
-
district-heating plant
-
diversion plant
-
double-strand plant
-
drainage pumping plant
-
drop-hammer plant
-
dry-process plant
-
dual-purpose turbine plant
-
dust extraction plant
-
dust handling plant
-
earth-freezing plant
-
earth-moving plant
-
EBM plant
-
EBR plant
-
ECM plant
-
edible fat plant
-
EDR plant
-
effluent treatment plant
-
eight-strand plant
-
ejector refrigerating plant
-
electric pig-iron plant
-
electric power plant
-
electrical propulsion plant
-
electricity distribution plant
-
electrochemical machining plant
-
electrodialysis plant
-
electrodialysis reversal plant
-
electrolytic tinning plant
-
electron-beam-melting plant
-
electron-beam-refining plant
-
electrostatic precipitation desalting plant
-
engineering plant
-
evaporation plant
-
extraction plant
-
extra-terrestrial power plant
-
fabric-dipping plant
-
feed milling
-
fermentation plant
-
filter plant
-
finishing plant
-
fish processing plant
-
fission power plant
-
fixed plant
-
fixed-head power plant
-
flexible manufacturing plant
-
flexing generating plant
-
floating nuclear power plant
-
floating pile-driving plant
-
floating power plant
-
flotation plant
-
flour milling plant
-
folding carton plant
-
food concentrate plant
-
force ventilation plant
-
formcoke plant
-
fossil-fuel plant
-
fractional horsepower refrigerating plant
-
fractional ton refrigerating plant
-
fragmentation plant
-
freezing plant
-
fruit-and-vegetable processing plant
-
fuel-pulverizing plant
-
full-fashioned sweater plant
-
full-scale plant
-
fume-cleaning plant
-
fume-extraction plant
-
furniture plant
-
fusion power plant
-
galvanizing plant
-
gas absorption plant
-
gas fire extinguishing plant
-
gas fractionation plant
-
gas liquids plant
-
gas plant
-
gas turbine power plant
-
gas turbine plant
-
gas-and-oil-buming power plant
-
gas-carburizing plant
-
gas-cleaning plant
-
gas-compressor plant
-
gaseous-diffusion plant
-
gas-fired plant
-
gas-generator plant
-
gasification-based combined cycle plant
-
gasifier-combined cycle plant
-
gasoline plant
-
gas-producer plant
-
gas-treating plant
-
gas-washing plant
-
generating plant
-
geothermal power plant
-
glass-manufacturing plant
-
glass-recycling plant
-
grading plant
-
graphite plant
-
graphite recovery plant
-
grease plant
-
hardening plant
-
H-cycle plant
-
heat power plant
-
heat pump plant
-
heat raising plant
-
heat-electric generating plant
-
heating and power plant
-
heating network plant
-
heating plant
-
heating-water converter plant
-
heavy-water plant
-
high-capacity refrigerating plant
-
high-head power plant
-
H-iron plant
-
hot dip filming plant
-
hot water peaking boiler plant
-
hybrid wind-photovoltaic plant
-
hydroelectric power plant
-
hydroelectric plant
-
hydroelectric pumped storage power plant
-
hydro-photovoltaic plant
-
ice plant
-
incinerator plant
-
indicator plant
-
industrial power plant
-
industrial steam plant
-
industrial waste treatment plant
-
industrial-scale plant
-
in-house printing plant
-
intake plant
-
integral coal gasification combined cycle plant
-
integrated steel plant
-
interlocking plant
-
intermediate solar plant
-
internal combustion power plant
-
ion-exchange plant
-
ion-exchange softening plant
-
iron powder plant
-
iron-ore pelletizing plant
-
isolated generating plant
-
isotope separation plant
-
jobbing plant
-
Kaldo-steelmaking plant
-
Kaldo plant
-
killing plant
-
laboratory-scale plant
-
ladle degassing plant
-
ladle-spraying plant
-
LD plant
-
LDAC oxygen-steelmaking plant
-
light plant
-
liquefied natural gas plant
-
liquefied petroleum gas plant
-
liquid freezing plant
-
liquor plant
-
loading plant
-
local plant
-
locomobile power plant
-
locomotive repair plant
-
loop plant
-
low-capacity refrigerating plant
-
low-head power plant
-
lube plant
-
machine tool plant
-
magnetohydrodynamic power plant
-
main propulsion machinery plant
-
marine reactor plant
-
marine refrigerating plant
-
meat packing plant
-
meat producing plant
-
mechanical air-conditioning plant
-
mechanical drive gas turbine plant
-
mechanical refrigerating plant
-
medium-head power plant
-
merchant-coke plant
-
metals-recovery plant
-
MHD power plant
-
midget power plant
-
milk plant
-
milling plant
-
mine-mouth power plant
-
mixed pumped-storage plant
-
mixing plant
-
mobile power plant
-
mold degassing plant
-
mold hydraulic cleaning plant
-
mortar-mixing plant
-
muck-shifting plant
-
mud-mixing plant
-
multiple-unit power plant
-
multipurpose sea-water desalination plant
-
multistrand plant
-
multiunit power plant
-
naphtha-treating plant
-
natural gasoline plant
-
natural gas-sweetening plant
-
noncondensing power plant
-
nonintegrated steel plant
-
nonterrestrial power plant
-
nuclear cogeneration plant
-
nuclear gas turbine plant
-
nuclear heating plant
-
nuclear power plant
-
nuclear steam power plant
-
oil shale retorting plant
-
oil-and-gas gathering plant
-
oil-burning power plant
-
oil-desulfurization plant
-
oil-extraction plant
-
oil-fired plant
-
oil-reclamation plant
-
oil-treating plant
-
on-line gas plant
-
open-coil annealing plant
-
open-cycle gas turbine plant
-
open-hearth plant
-
orbital power plant
-
orbital solar power plant
-
ore-bedding plant
-
ore-blending plant
-
ore-breaker plant
-
ore-conditioning plant
-
ore-dressing plant
-
ore-roasting plant
-
ore-washing plant
-
outdoor-type power plant
-
oxidizing plant
-
oxygen-converter plant
-
ozone plant
-
packaged power plant
-
packaged refrigerating plant
-
packing plant
-
paint varnish and lacquer plant
-
pallet conveyor mold-type plant
-
paperboard plant
-
peaking power plant
-
peaking boiler plant
-
peak-shaving liquefied natural gas plant
-
pellet plant
-
petroleum chemical plant
-
photovoltaic power plant
-
physical plant
-
pickling plant
-
pig-casting plant
-
pilot plant
-
plating plant
-
plywood manufacturing plant
-
polymerization plant
-
pontoon pile-driving plant
-
power plant
-
preserving plant
-
printing plant
-
process gas turbine plant
-
processing plant
-
Prolerizing plant
-
propulsion plant
-
public utility power plant
-
public-service power plant
-
pulverized-coal-fired plant
-
pulverizing plant
-
pump plant
-
pumped-storage plant
-
pumping plant
-
pumping-generating plant
-
quick-freezing plant
-
radiant freeze-drying plant
-
ready-mix plant
-
recovery plant
-
reforming plant
-
refrigerating plant
-
refuse-fired plant
-
regasifying plant
-
regenerative gas turbine plant
-
relift pumping plant
-
rendering plant
-
retreading plant
-
reverse osmosis plant
-
rolling plant
-
route interlocking plant
-
run-of-river plant
-
sack filling plant
-
salt plant
-
sand-preparing plant
-
satellite printing plant
-
scrap-shredding plant
-
screening plant
-
sea-water desalting plant
-
sedimentation plant
-
self-contained rail welding plant
-
self-contained refrigerating plant
-
self-sufficient plant
-
semiclosed-cycle gas turbine plant
-
semiunderground plant
-
separating plant
-
sewage disposal plant
-
simple-cycle gas turbine plant
-
simulated power plant
-
single-pool power plant
-
single-strand plant
-
single-unit plant
-
sinking plant
-
sintering plant
-
sizing plant
-
skimming plant
-
slab-producting plant
-
slag-expanding plant
-
slag-screening plant
-
slaughtering and meat processing plant
-
slaughtering plant
-
sludge filtration plant
-
small-size refrigerating plant
-
smoke extractor plant
-
soap plant
-
solar ice plant
-
solar plant
-
solar power plant
-
solar tower plant
-
solvent-extraction plant
-
split-shaft gas turbine plant
-
sputtering plant
-
stabilization plant
-
stand-alone solar power plant
-
standby plant
-
stationary gas turbine plant
-
stationary refrigerating plant
-
steam condensing plant
-
steam plant
-
steam power plant
-
steam-electric-turbine plant
-
steaming plant
-
steel continuous casting plant
-
steel plant
-
storage plant
-
stream degassing plant
-
stripping plant
-
sugar refining plant
-
sulfur recovery plant
-
sunken-type plant
-
superposed plant
-
supplementary fired combined cycle plant
-
supplementary heating plant
-
sweater knitting plant
-
tap-degassing plant
-
tar-boiling plant
-
tea plant
-
television plant
-
tertiary plant
-
thermal power plant
-
thermal plant
-
thermodynamic solar power plant
-
thermoelectric refrigerating plant
-
tidal power plant
-
tiger topping plant
-
tinning plant
-
tin-refining plant
-
tin-smelting plant
-
tonnage oxygen plant
-
top-blown oxygen vessel plant
-
topping plant
-
tower-type plant
-
train washing plant
-
transformer plant
-
trash-fired power plant
-
traveling pneumatic grain-discharging plant
-
treatment plant
-
tritium removal plant
-
turbine plant
-
turbo-refrigerating plant
-
two-axes focusing solar plant
-
two-shaft plant
-
ultrafiltration concentration plant
-
undercar power plant
-
underground nuclear power plant
-
underwater nuclear power plant
-
unit refrigerating plant
-
uranium enrichment plant
-
vacuum casting plant
-
vacuum degassing plant
-
vacuum dezincing plant
-
vacuum gas turbine plant
-
vacuum metallothermic plant
-
vacuum molding plant
-
vacuum-decarburization plant
-
variable-head power plant
-
variable-load power plant
-
vertical plant
-
vulcanizing plant
-
washing plant
-
waste disposal plant
-
waste-to-energy cogeneration plant
-
waste-to-energy plant
-
water demineralization plant
-
water softening plant
-
water treatment plant
-
water-cooling plant
-
waterpower plant
-
wave energy plant
-
wax plant
-
wet-process plant
-
wind-mill electric generating plant
-
wire-drawing plant
-
year-round air-conditioning plant
-
zero-discharge plant
-
zinc ore roasting plant
-
zinc-smelting plant -
16 Rammler, Erich
[br]b. 9 July 1901 Tirpersdorf, near Oelsnitz, Germanyd. 6 November 1986 Freiberg, Saxony, Germany[br]German mining engineer, developer of metallurgic coke from lignite.[br]A scholar of the Mining Academy in Freiberg, who in his dissertation dealt with the fineness of coal dust, Rammler started experiments in 1925 relating to firing this material. In the USA this process, based on coal, had turned out to be very effective in large boiler furnaces. Rammler endeavoured to apply the process to lignite and pursued general research work on various thermochemical problems as well as methods of grinding and classifying. As producing power from lignite was of specific interest for the young Soviet Union, with its large demand from its new power stations and its as-yet unexploited lignite deposits, he soon came into contact with the Soviet authorities. In his laboratory in Dresden, which he had bought from the freelance metallurgist Paul Otto Rosin after his emigration and under whom he had been working since he left the Academy, he continued his studies in refining coal and soon gained an international reputation. He opened up means of producing coke from lignite for use in metallurgical processes.His later work was of utmost importance after the Second World War when several countries in Eastern Europe, especially East Germany with its large lignite deposits, established their own iron and steel industries. Accordingly, the Soviet administration supported his experiments vigorously after he joined Karl Kegel's Institute for Briquetting in Freiberg in 1945. Through his numerous books and articles, he became the internationally leading expert on refining lignite and Kegel's successor as head of the Institute and Professor at the Bergakademie. Six years later, he produced for the first time high-temperature coke from lignite low in ash and sulphur for smelting in low-shaft furnaces. Rammler was widely honoured and contributed decisively to the industrial development of his country; he demonstrated new technological processes when, under austere conditions, economical and ecological considerations were neglected.[br]BibliographyRammler, whose list of publications comprises more than 600 titles on various matters of his main scientific concern, also was the co-author (with E.Wächtler) of two articles on the development of briquetting brown coal in Germany, both published in 1985, Freiberger Forschungshefte, D 163 and D 169, Leipzig.Further ReadingE.Wächtler, W.Mühlfriedel and W.Michel, 1976, Erich Rammler, Leipzig, (substantial biography, although packed with communist propaganda).M.Rasch, 1989, "Paul Rosin—Ingenieur, Hochschullehrer und Rationalisierungsfachmann". Technikgeschichte 56:101–32 (describes the framework within which Rammler's primary research developed).WK -
17 Curr, John
[br]b. 1756 Kyo, near Lanchester, or in Greenside, near Ryton-on-Tyne, Durham, Englandd. 27 January 1823 Sheffield, England[br]English coal-mine manager and engineer, inventor of flanged, cast-iron plate rails.[br]The son of a "coal viewer", Curr was brought up in the West Durham colliery district. In 1777 he went to the Duke of Norfolk's collieries at Sheffield, where in 1880 he was appointed Superintendent. There coal was conveyed underground in baskets on sledges: Curr replaced the wicker sledges with wheeled corves, i.e. small four-wheeled wooden wagons, running on "rail-roads" with cast-iron rails and hauled from the coal-face to the shaft bottom by horses. The rails employed hitherto had usually consisted of plates of iron, the flange being on the wheels of the wagon. Curr's new design involved flanges on the rails which guided the vehicles, the wheels of which were unflanged and could run on any hard surface. He appears to have left no precise record of the date that he did this, and surviving records have been interpreted as implying various dates between 1776 and 1787. In 1787 John Buddle paid tribute to the efficiency of the rails of Curr's type, which were first used for surface transport by Joseph Butler in 1788 at his iron furnace at Wingerworth near Chesterfield: their use was then promoted widely by Benjamin Outram, and they were adopted in many other English mines. They proved serviceable until the advent of locomotives demanded different rails.In 1788 Curr also developed a system for drawing a full corve up a mine shaft while lowering an empty one, with guides to separate them. At the surface the corves were automatically emptied by tipplers. Four years later he was awarded a patent for using double ropes for lifting heavier loads. As the weight of the rope itself became a considerable problem with the increasing depth of the shafts, Curr invented the flat hemp rope, patented in 1798, which consisted of several small round ropes stitched together and lapped upon itself in winding. It acted as a counterbalance and led to a reduction in the time and cost of hoisting: at the beginning of a run the loaded rope began to coil upon a small diameter, gradually increasing, while the unloaded rope began to coil off a large diameter, gradually decreasing.Curr's book The Coal Viewer (1797) is the earliest-known engineering work on railway track and it also contains the most elaborate description of a Newcomen pumping engine, at the highest state of its development. He became an acknowledged expert on construction of Newcomen-type atmospheric engines, and in 1792 he established a foundry to make parts for railways and engines.Because of the poor financial results of the Duke of Norfolk's collieries at the end of the century, Curr was dismissed in 1801 despite numerous inventions and improvements which he had introduced. After his dismissal, six more of his patents were concerned with rope-making: the one he gained in 1813 referred to the application of flat ropes to horse-gins and perpendicular drum-shafts of steam engines. Curr also introduced the use of inclined planes, where a descending train of full corves pulled up an empty one, and he was one of the pioneers employing fixed steam engines for hauling. He may have resided in France for some time before his death.[br]Bibliography1788. British patent no. 1,660 (guides in mine shafts).1789. An Account of tin Improved Method of Drawing Coals and Extracting Ores, etc., from Mines, Newcastle upon Tyne.1797. The Coal Viewer and Engine Builder's Practical Companion; reprinted with five plates and an introduction by Charles E.Lee, 1970, London: Frank Cass, and New York: Augustus M.Kelley.1798. British patent no. 2,270 (flat hemp ropes).Further ReadingF.Bland, 1930–1, "John Curr, originator of iron tram roads", Transactions of the Newcomen Society 11:121–30.R.A.Mott, 1969, Tramroads of the eighteenth century and their originator: John Curr', Transactions of the Newcomen Society 42:1–23 (includes corrections to Fred Bland's earlier paper).Charles E.Lee, 1970, introduction to John Curr, The Coal Viewer and Engine Builder's Practical Companion, London: Frank Cass, pp. 1–4; orig. pub. 1797, Sheffield (contains the most comprehensive biographical information).R.Galloway, 1898, Annals of Coalmining, Vol. I, London; reprinted 1971, London (provides a detailed account of Curr's technological alterations).WK / PJGR -
18 Buddle, John
SUBJECT AREA: Mining and extraction technology[br]b. 15 November 1773 Kyloe, Northumberland, Englandd. 10 October 1843 Wallsend, Northumberland, England[br]English colliery inspector, manager and agent.[br]Buddle was educated by his father, a former schoolteacher who was from 1781 the first inspector and manager of the new Wallsend colliery. When his father died in 1806, John Buddle assumed full responsibility at the Wallsend colliery, and he remained as inspector and manager there until 1819, when he was appointed as colliery agent to the third Marquis of Londonderry. In this position, besides managing colliery business, he acted as an entrepreneur, gaining political influence and organizing colliery owners into fixing prices; Buddle and Londonderry were also responsible for the building of Seaham harbour. Buddle became known as the "King of the Coal Trade", gaining influence throughout the important Northumberland and Durham coalfield.Buddle's principal contribution to mining technology was with regard to the improvement of both safety standards and productivity. In 1807 he introduced a steam-driven air pump which extracted air from the top of the upcast shaft. Two years later, he drew up plans which divided the coalface into compartments; this enabled nearly the whole seam to be exploited. The system of compound ventilation greatly reduced the danger of explosions: the incoming air was divided into two currents, and since each current passed through only half the underground area, the air was less heavily contaminated with gas.In 1813 Buddle presented an important paper on his method for mine ventilation to the Sunderland Society for Preventing Accidents in Coal-mines, which had been established in that year following a major colliery explosion. He emphasized the need for satisfactory underground lighting, which influenced the development of safety-lamps, and assisted actively in the experiments with Humphrey Davy's lamp which he was one of the first mine managers to introduce. Another mine accident, a sudden flood, prompted him to maintain a systematic record of mine-workings which ultimately resulted in the establishment of the Mining Record Office.[br]Bibliography1838, Transactions of the Natural History Society of Northumberland 11, pp. 309–36 (Buddle's paper on keeping records of underground workings).Further ReadingR.L.Galloway, 1882, A History of Coalmining in Great Britain, London (deals extensively with Buddle's underground devices).R.W.Sturgess, 1975, Aristocrat in Business: The Third Marquis of Londonderry asCoalowner and Portbuilder, Durham: Durham County Local History Society (concentrates on Buddle's work after 1819).C.E.Hiskey, 1978, John Buddle 1773–1843, Agent and Entrepreneur in the NortheastCoal Trade, unpublished MLitt thesis, Durham University (a very detailed study).WK -
19 MacGregor, Robert
SUBJECT AREA: Ports and shipping[br]b. 1873 Hebburn-on-Tyne, Englandd. 4 October 1956 Whitley Bay, England[br]English naval architect who, working with others, significantly improved the safety of life at sea.[br]On leaving school in 1894, MacGregor was apprenticed to a famous local shipyard, the Palmers Shipbuilding and Iron Company of Jarrow-on-Tyne. After four years he was entered for the annual examination of the Worshipful Company of Shipwrights, coming out top and being nominated Queen's Prizeman. Shortly thereafter he moved around shipyards to gain experience, working in Glasgow, Hull, Newcastle and then Dunkirk. His mastery of French enabled him to obtain in 1906 the senior position of Chief Draughtsman at an Antwerp shipyard, where he remained until 1914. On his return to Britain, he took charge of the small yard of Dibbles in Southampton and commenced a period of great personal development and productivity. His fertile mind enabled him to register no fewer than ten patents in the years 1919 to 1923.In 1924 he started out on his own as a naval architect, specializing in the coal trade of the North Sea. At that time, colliers had wooden hatch covers, which despite every caution could be smashed by heavy seas, and which in time of war added little to hull integrity after a torpedo strike. The International Loadline Committee of 1932 noted that 13 per cent of ship losses were through hatch failures. In 1927, designs for selftrimming colliers were developed, as well as designs for steel hatch covers. In 1928 the first patents were under way and the business was known for some years as MacGregor and King. During this period, steel hatch covers were fitted to 105 ships.In 1937 MacGregor invited his brother Joseph (c. 1883–1967) to join him. Joseph had wide experience in ship repairs and had worked for many years as General Manager of the Prince of Wales Dry Docks in Swansea, a port noted for its coal exports. By 1939 they were operating from Whitley Bay with the name that was to become world famous: MacGregor and Company (Naval Architects) Ltd. The new company worked in association with the shipyards of Austin's of Sunderland and Burntisland of Fife, which were then developing the "flatiron" colliers for the up-river London coal trade. The MacGregor business gained a great boost when the massive coastal fleet of William Cory \& Son was fitted with steel hatches.In 1945 the brothers appointed Henri Kummerman (b. 1908, Vienna; d. 1984, Geneva) as their sales agent in Europe. Over the years, Kummerman effected greater control on the MacGregor business and, through his astute business dealings and his well-organized sales drives worldwide, welded together an international company in hatch covers, cargo handling and associated work. Before his death, Robert MacGregor was to see mastery of the design of single-pull steel hatch covers and to witness the acceptance of MacGregor hatch covers worldwide. Most important of all, he had contributed to great increases in the safety and the quality of life at sea.[br]Further ReadingL.C.Burrill, 1931, "Seaworthiness of collier types", Transactions of the Institution of Naval Architechts.S.Sivewright, 1989, One Man's Mission-20,000 Ships, London: Lloyd's of London Press.See also: Ayre, Sir Amos LowreyFMW -
20 lignite mining
добыча лигнита
—
[ http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]EN
lignite mining
Extraction of brown coal from natural deposits; lignite is a brownish-black solid fuel in the second stage in the development of coal. It has a little over half the heating value of bituminous or anthracite coal. (Source: KORENa)
[http://www.eionet.europa.eu/gemet/alphabetic?langcode=en]Тематики
EN
DE
FR
Англо-русский словарь нормативно-технической терминологии > lignite mining
См. также в других словарях:
Coal-water slurry fuel — (CWSF or CWS or CWF) is a fuel which consists of fine coal particles suspended in water. Presence of water in CWS reduces harmful emissions into the atmosphere, makes the coal explosion proof, makes use of coal equivalent to use of liquid fuel (e … Wikipedia
coal mining — Coal was very important in the economic development of Britain. It was used as fuel in the factories built during the Industrial Revolution and continued to be important until the 1980s. The main coalfields are in north east England, the north… … Universalium
Coal gasification — is the process of producing coal gas, a type of syngas–a mixture of carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2) and water vapour (H2O)–from coal. Coal gas, which is a combustible gas, was traditionally used as a source of energy for … Wikipedia
Coal mining in India — Coal reserves in BTUs as of 2009 Coal mining in India has a long history of commercial exploitation covering nearly 220 years starting in 1774 with John Sumner and Suetonius Grant Heatly of the East India Company in the Raniganj Coalfield along… … Wikipedia
Coal — Sedimentary Rock Anthracite coal Composition Primary carbon Secondary hydrogen, sulfur … Wikipedia
Coal Company Zarechnaya — Industry Energy Genre Coal mining Founded 2008 (2008) Headquarters Moscow, Russia … Wikipedia
Coal upgrading technology — refers to a class of technologies developed to remove moisture and certain pollutants from low rank coals such as sub Bituminous coal and lignite (brown coal) and raise their calorific values. Companies located in Australia, Germany and the… … Wikipedia
Coal India Limited — (CIL) Type State owned enterprise Public Traded as BSE: … Wikipedia
Coal Authority — Formation 1994 Legal status Non departmental public body (NDPB) Purpose/focus Coal mining in the UK Location 200 Lichfield Lane, Mansfield, Nottinghamshire, NG18 4RG … Wikipedia
Coal bed methane extraction — (CBM extraction) is a method for extracting methane from a coal deposit. Contents 1 Basic principles 2 Areas with coal bed methane extraction 3 Measuring the gas content of coal … Wikipedia
Development Research Center of the State Council — 国务院发展研究中心 Guówùyuàn Fāzhǎn Yánjiū Zhōngxīn Agency overview Jurisdiction … Wikipedia